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Abstract 0 This paper presents some very simplified general treat- 
ments which will allow workers to derive equations for any linear 
mammillary compartment model with any first- or zero-order or 
impulse input process. This is done through the use of general input 
and disposition functions, the method of partial fractions for solving 
Laplace transforms, and the use of a multiple-dosing function. A 
disposition function defines the model necessary to describe ac- 
curately drug body concentrations after the drug has entered the 
blood circulation. A general equation is presented to describe the 
disposition function in Laplace operators for the central compart- 
ment of a linear mammillary model having n driving force compart- 
ments with elimination occurring from any of the compartments. 
Input functions describing intravenous bolus injection, zero-order 
infusion, or GI absorption and first-order processes for oral dosing 
and intramuscular injection are presented. The Laplace transform 
for the amount of drug in the central compartment is given by the 
products of the input and disposition functions. These Laplace 
transforms may usually be solved in one step using the method of 
partial fractions, without the necessity of referring to extensive 
tables. By using a multiple-dosing function, general equations may 
be derived covering the entire dosage regimen of a drug in a patient. 

Keyphrases 0 Mammillary models (linear), with first- or zero-order 
input process-equations, general treatment 0 Pharmacokinetics- 
general treatment of linear mammillary models with elimination 
from any compartment 0 Compartment elimination-general 
equations for linear mammillary models, first- or zero-order input 
process 

During the past decade, the pharmacokinetic treat- 
ment of plasma and urine drug concentrations has pro- 
gressed through a number of modeling sophistications 
as the ability to analyze drug concentration levels has 
improved. A large number of papers have appeared in 
the pharmaceutical literature describing the treatment 
of data, at first for the one-compartment body model, 
then for the two-compartment model, and now for 
various permutations of the three-compartment body 

& 
Scheme I-A general mammillary model with elimination allowed 
from eoery compartment. The disposition function, d., describes the 
model necessary to describe accurately drug body concentrations 
after the drug has gotten into the blood circulation. Input functions 
(ins) describe the process or processes necessary to get the drug into 
tl7e bloodstream. The products of the input and disposition functions 
yield the Laplace transform for the equation describing the time course 

of the amount of drug in a compartment (a,). 

model. In each paper, a major portion of the published 
material deals with the derivation of the equations as 
particularly suited to  the adaptation the author wishes 
to emphasize. This paper intends to present some very 
simplified general treatments which will allow workers 
to derive equations for any linear mammillary compart- 
ment model with any first- or zero-order input process. 
This will be done through the use of general input and 
disposition functions, the method of partial fractions 
for solving Laplace transforms, and the use of a multiple- 
dosing function. 

THEORETICAL CONSIDER ATIONS 

Input and Disposition Functions-Rescigno and Segre (1) intro- 
duced the use of transfer functions in the derivation of pharmaco- 
kinetic models. Riggs (2) also demonstrated their use with respect 
to linear functions describing plasma concentrations of drugs. They 
have received little use in the work of pharmaceutical scientists 
beyond one application by Loo and Riegelman (3) in a recent deriva- 
tion involving postinfusion blood curves. 

A general model describing input and disposition functions is 
presented in Scheme I. The input functions (in.) and the disposition 
function (d,) are defined such that the product of the two functions 
yields the Laplace transform of the equation describing the time 
course of a drug in a particular compartment (as).  In this work, a 
disposition function (d,) defines the model necessary to describe 
accurately drug body concentrations after the drug has entered 
the blood circulation. That is, disposition describes everything that 
happens to a drug (i.e.,  distribution, metabolism, and unidirec- 
tional elimination through all possible routes) as if all input into 
the circulation occurred instantaneously. This definition of the 
disposition function follows that introduced by Riegelman et al. (4) 
for disposition rate constants. Input functions (in,) describe the 
process necessary to get the dose into the bloodstream. They may 
either describe an intravenous bolus injection, an intravenous in- 
fusion, a first- or zero-order absorption from a site such as the gut 
or a muscle, or any combination of these methods of input. 

General Disposition Equation for the Central Compartment- 
Rescigno and Segre (1) presented general equations for the treat- 
ment of systems with strongly connected compartments (i.e., every 
compartment is connected by a rate constant with every other com- 
partment) and for reversible and irreversible catenary systems. They 
adapted these general equations for use in a mammillary model as 
was studied by Matthews ( 5 )  in the investigation of the kinetics of 
protein metabolism. Their general treatment applies to a system of a 
central compartment connected with 17 - 1 other compartments, 
where all elimination from the system takes place from the central 
compartment. This type of elimination would be analogously de- 
scribed by rate constant klo in the model depicted in Scheme I. 
Sheppard (6 )  also introduced general equations to treat the mam- 

Scheme II-A three-compartment disposition model as proposed by 
Nagashima et al. (7) to describe the pharmacokinetics of dicumarol. 
Note that elimination does not take place from the central com- 

partment. 
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millary model as already defined. However, recently a number of 
papers appeared in which unidirectional elimination was hy- 
pothesized for compartments other than the central compartment 
(7-9), such as through pathways described by k r o  and k,o. 

Therefore, the following general equation was empirically de- 
rived to describe the Laplace transform for the disposition function 
of the central compartment in a linear mammillary model where 
elimination of drug from any compartment is allowed: 

J 

where: 

= disposition function for Compartment 1, the central com- 
partment; it is a function of s, an auxiliary variable intro- 
duced with the Laplace transforms 

= continued product where any term is defined as equal to 1 
when the index takes a forbidden value; i.e., / r  = 1 in 
the numerator or m = j in the denominator 

k l j  = first-order rate constant describing transfer from Com- 
partment 1 to Compartment j ;  i.e., in Scheme I, klr 
describes transfer from Compartment 1 into Com- 
partment 4 

E, = sum of the exit rate constants out of Compartment i 
(9); for example, in Scheme I, E4 = k4, + k40 and E, = 

= number of driving force compartments in the disposition 
model, that is, compartments having exit rate constants. 

As an example of the use of Eq. 1, consider the three-compart- 
ment model (Scheme 11) proposed by Nagashima et ul. (7) to de- 
scribe the pharmacokinetics of dicoumarol'. Note that elimination 
does not occur from the central compartment but rather from 
Compartment 2. Realizing that there are three driving force com- 
partments ( / r  = 3 )  and that El = k12 + kla, Ez := k20  + kZ1, and Ea = 
kal ,  one may immediately write down the disposition function for the 
central compartment: 

II 

kia + kiz -t kia + kid +k in  
/ r  

(Eq. 2) 

The numerator is the continued product as i varies from 2 to 3. 
The first term in the denominator is the continued product as i 
varies from 1 to 3 .  The second term in the denominator is a result of 
the first time through the sum, ix., j = 2. Note that even though the 
continued product term in the sum in Eq. 1 is stated as varying 
from 2 to j r ,  there is no (s + E2) term in the second term of the 
denominator of Eq. 2 since m = j is forbidden. The third term in 
the denominator is a result of the second and final time through 
the sum, i.e., j = / r  = 3 .  

Since a term with s to the third power appears in the denominator 
of Eq. 2 ( i .e . ,  since there are three driving force compartments in 
the model), the equation describing the disposition function for the 
central compartment is triexponential. Therefore, Eq. 2 may be 
rewritten as: 

where a,  f l ,  and y may be expressed in terms of the individual rate 
constants when the denominator of Eq. 2 is expanded in terms of the 
coefficients of the powers of s. 

Number of Solvable Rate Constants in a Mammillary Disposition 
Model-Five rate constants describe the disposition of dicumarol 
in the model (Scheme 11) proposed by Nagashima er ul. (7). By sam- 
pling the central compartment, the authors were able to solve for 
these rate constants. However, one should realize that in any linear 
mammillary model for a single drug, where only the central com- 
partment is available for sampling, the maximum number of solva- 
ble rate constants, R, is given by Eq. 4 and only one of the R rate 

1 Formerly bishydroxycoumarin. 

constants may unambiguously describe elimination of drug from 
the model2: 

R = 201 - 1) + 1 (Eq. 4) 

where: 

R = maximum number of solvable terms or rate constants in a 
mammillary model with elimination allowed from any com- 
partment 

I I  = number of driving force compartments in the disposition 
model, that is, the number of compartments with rate con- 
stants coming out of them. 

Thus, if either one or two elimination rate constants ( k l o  and/or 
k30) were added to the model in Scheme 11, it would still be only 
possible to solve for five terms, even though the model would pic- 
torially show six or seven rate constants. In fact, as the authors 
(7) mention, it is impossible to ascertain from the data available 
whether the model should have elimination from one, two, or three 
compartments. This point was raised with respect to the number cf  
eliminating compartments in the two-compartment model by Row- 
land et ul. (9). As stated previously, only one of the R rate constants 
may unambiguously describe elimination of drug from the model. 
Thus, if klo was added to the model in Scheme 11, EP would become 
one of the five solvable terms, but the relative sizes of k20 and k ~ ,  
could not be determined. Nagashima et ul. (7) assumed that elimina- 
tion occurred from the more rapidly accessible peripheral compart- 
ment and showed that different numerical constants were obtained 
if alternate assumptions were made. This only means that the defini- 
tions of Et ,  Ea, and El, given in Eqs. 2 and 3 ,  change depending on 
the model hypothesized. However, as Eq. 4 points out, there is no 
evidence from the data as to which is the correct model. 

It should be emphasized that Eq. 4 was defined with respect to 
the number of solvable rate constants when only the central 
compartment (a driving force compartment) is sampled. The ability 
to sample unchanged drug in additional nondriving force compart- 
ments such as the urine or expired air would allow one to deter- 
mine additional rate constants. However, in most cases these addi- 
tional rate constants will only be a part of a previously hypothesized 
elimination rate constant and will not allow the investigator to de- 
termine the validity of the hypothesized model. For example, if 
urinary excretion of unchanged drug is also examined for a com- 
pound hypothesized to follow the model in Scheme 11, the rate con- 
stant kPa  may be determined from the urinary data. However, un- 
less all of the injected drug is eliminated unchanged in the urine, 
the investigator has no additional information as to the validity of 
one particular three-compartment model. A future publication will 
deal in greater detail with the results and implications obtainable 
when more than one compartment in the model may be sampled 
and when it is possible to input drug into the model by routes that 
bypass the central compartment. 

Equation 4 applies only to a drug in a single mammillary model. 
Rowland et al. (9) pointed out how it is possible to solve additional 
rate constants when both a drug and its metabolite are injected and 
followed in the plasma. However, in this case, one is really dealing 
with two mammillary models, one for the drug and one for its 
metabolite. As described in a following section, the mammillary 
model for the unchanged drug may be considered an input function 
for the metabolite model. 

Common Input Functions-The following input functions, pic- 
tured in Scheme I, describe the usual methods utilized to get drug 
into the central compartment. 

For an intravenous bolus: 

in, = dose (Eq. 5) 

For intravenous infusion or zero-order absorption: 

) is (Eq. 6) in - kO(e-as - e--hs 
8 -  

where ko = zero-order infusion rate in units of amount per time, 

2 Although Eq. 4 could be more simply expressed as R = 2n - 1 ,  this 
form was chosen to emphasize the fact that for each compartment be- 
yond the first, two additional terms describing either distribution or a 
combination of distribution and elimination may be determined; yet it 
is still only possible to determine one elimination constant unambigu- 
ously. 
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a = time when infusion begins, and b = time when infusion ends. 
In most cases, the intravenous infusion begins at time zero (a  = 0) 
and, therefore, Eq. 6a is the more usual input function for intra- 
venous infusion: 

in, = kO(l - e-a*)/s (Eq. 6 4  

Equations 6 and 6a may also be used to define zero-order input from 
the GI  tract or a pellet implant. 

For first-order absorption: 

in, = k ,  dose/(s + k , )  (Eq. 7) 

where k ,  = first-order absorption rate constant. This input func- 
tion may describe absorption from any site but will usually be 
used in either oral or intramuscular dosing equations. Dose in 
Eq. 7 refers to the dose that actually gets into the central compart- 
ment as unchanged drug, and very often an F may appear in equa- 
tions describing oral dosing, where F is the availability of the drug. 
[Availability is defined (10) as the extent to which an administered 
material reaches the point of measurement.] 

Input functions may also be combined if a drug is given by more 
than one route of administration. For example, it is common to 
give a patient an intravenous bolus injection of a drug in order to 
reach therapeutic blood levels quickly, followed by a zero-order 
infusion so that blood levels may be maintained. Under this condi- 
tion the input function would be the sum of Eqs. 5 and 6, where a 
would equal zero if the infusion began at  the same time as the bolus 
injection was administered but would more likely be equal to a 
value consistent with beginning the infusion after the bolus injection. 

DISCUSSION 

Solving the Mammillary Model Using the Input and Disposition 
Functions and the Method of Partial Fractions-The Laplace trans- 
form for the amount of drug in Compartment 1, as,l, is given by the 
product of the input and disposition functions: 

as,l = ( in J (dd  (Eq. 8) 

Let us now consider the dicumarol model (Scheme 11) with an 
intravenous bolus injection, The input function for an intravenous 
bolus is exactly equal to dose. Therefore, multiplying the disposi- 
tion function (Eq. 3) by dose, D, yields the Laplace transform for 
the amount of drug in the central compartment: 

The anti-Laplace of Eq. 9 could be found in an extensive table of 
Laplace transforms, but the general method of partial fractions is 
much easier and is applicable in the majority of cases. Recently, 
Benet and Turi ( 1  1) described the use of a general partial fraction 
theorem for obtaining inverse Laplace transforms in pharmacoki- 
netic analysis as is detailed here. 

If the quotient of two polynomials P(s)/Q(s) is such that Q(s)  has 
a higher degree and contains the factor (s- Xi), which is not repeated, 
then : 

where 1,'s are the roots of the polynomial Q(s) ;  Qt(X,) is the value 
of the denominator when X, is substituted for all the s terms except 
for the term originally containing Xi, this term being omitted; and 
s is the standard notation used in Laplace operations (12). Since 
the two polynomials in Eq. 9 fulfill the requirements listed for use 
of Eq. 10 (Le., there are no repeated factors in the denominator, and 
the denominator contains a higher degree in s than the numerator), 
the answer for the amount of drug in Compartment 1 ,  A, may be 
immediately written: 

Although the following facts need never be written, they are im- 
plicitly considered in going from Eq. 9 to Eq. 11 .  That is, the roots of 
the polynomial, Q(s) ,  are XI = -a, XI = -@, and Xa = -7. There- 
fore, the following definitions of Q&) are used. When: 

i = 1 Q i ( X i )  = (XI + @)(XI + y) = ( B  - a)(y - a )  
i = 2 Qi(Xi) = (A, + a ) ( h  + 7 )  = (a  - P)(Y - 8) 
i = 3 Qi(Xi) = (AS + a)(X3 + 8) = ((Y - r)(P - Y )  

The P(X,) terms are obtained by substitution of the appropriate 
root for every value of s in the numerator of Eq. 9. 

Let us review the procedure. When the factor (s + a) is omitted 
from the denominator (k., when the root Xi = -a is used), all 
values of s in Eq. 9 are substituted by -a and this root appears in 
the exponential term (e-mr). Next, the factor (s + @) is omitted 
when the root Xf = -@, etc. In practice, an easy way to carry out 
the taking of the anti-Laplace is to cover the factors in the denomi- 
nator one by one with a finger. while substituting the root of the 
covered factor for all the remaining s terms. If a single s term ap- 
pears in the denominator, as when zero-order infusion equations 
are derived, the root for this factor is zero. The above solution 
may not appear worth learning in view of the fact that the anti- 
Laplace might be found in an extensive table. However, consider 
the above model with an intravenous infusion input. The resulting 
products of the input (Eq. 6a) and disposition (Eq. 3) functions 
yield : 

Realizing that XI = 0, one may immediately write the solution: 

Note that even though there are four roots in Eq. 12, there are only 
three terms in Eq. 1 3  since the numerator of Eq. 12 becomes zero 
when the root zero is substituted for every value of s. It is also im- 
portant to realize that the single equation (Eq. 13) describes the 
amount of drug in Compartment 1, while infusion is going on and 
after infusion stops. While infusion is continuing, b = f and varies 
with time. When infusion ceases, b becomes a constant corre- 
sponding to the time infusion was stopped. Equation 13 can be used 
in a computer fit of all the data obtained from an intravenous in- 
fusion of a drug, but it requires the use of two independent vari- 
ables: the variable describing clock time t from the beginning of the 
experiment and the other equal to the value of b. (A third indepen- 
dent variable corresponding to a in Eq. 6 must be added if the in- 
fusion begins at  a time different than zero, as discussed previously 
for the combined intravenous bolus and infusion inputs.) All the 
least-squares nonlinear fitting programs usually utilized in phar- 
macokinetic treatments have the ability to fit data to Eq. 1 3  and 
should be used since data points taken before the infusion stops 
are extremely important in characterizing the fast disposition rate 
constants in multicompartment models. 

Two restrictions were placed on the use of the general partial 
fraction theorem for obtaining inverse Laplace transforms as ex- 
plained previously and in Refere/rce ZI. The first restriction, that 
the denominator in the Laplace transform function contain a 
higher degree of s than the numerator, will never be violated when 
deriving equations involving mammillary model disposition func- 
tions and the normal input functions described in this paper. How- 
ever, pharmacokinetic equations involving the second restriction, 
i.e., repeated functions in the denominator, are often found in 
pharmacokinetic derivations involving the time course for the 
amount of drug found in a nondriving force compartment such as 
the urine. If there is a repeating function in the denominator (e.g., 
s2), then the use of Eq. 10 will give the incorrect answer. It is then 
necessary either to rewrite the function in parts, where the repeating 
function is separated from the rest of the equation, or to use a 
general equation for repeated functions as described in the Appendix. 
An example of a solution of this type is presented in the next section. 
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intravenous ko 
infusion 

intravenous 

Scheme III-A two-compartment disposition model with elimina tion 
from the central compartment into Compartment 3, a nondriving 
force compartment such as the urine. Input into the model is by zero- 

order intravenous infusion. 

Solving the Mammillary Model for Compartments Other than the 
Central Compartment-The general equation for the central com- 
partment (Eq. 1) was previously described. There is no need to de- 
fine a general equation for any other compartment, since in a mam- 
millary model it is very easy to calculate the Laplace transform of 
any other Compartment, knowing the answer for the central com- 
partment. For example, if one wished to solve for As, the amount of 
drug in Compartment 3 in the model presented in Scheme 11, fol- 
lowing an intravenous bolus injection, one should take the following 
approach: 

1. Determine the differential equation describing Compart- 
ment 3: 

2. 

3. 
8: 

4. 
A3: 

A3 = 

dAa/dt = ki3Ai - knAn = k13AI - E3A3 (Eq. 14) 

Take the Laplace transform of the differential equation: 

s(a,.3) = klsa,,l - E3aJ.3 (Eq. 15) 

Solve for as,:, and substitute the value for a,.l as given in Eq. 

Using the method of partial fractions, write the answer for 

A similar approach should be followed in solving for any non- 
driving force compartment. Assume that one wished to derive the 
equation describing the output of drug into the urine following an 
intravenous infusion. This familiar two-compartment model is 
pictured in Scheme 111. The following steps should be followed: 

1. Determine the differential equation describing Compartment 
3, the urine: 

dAs/dt = k13A1 (Eq. 18) 

2. Take the Laplace transform of the differential equation: 

s(aa,3) = klda..d (Eq. 19) 

3. Solve for a,.3: 

4. Solve for a8:,1. 
The input function for an intravenous bolus beginning at  time zero 

is given by Eq. 6a. By using the general equation (Eq. l), the disposi- 
tion function may immediately be written: 

ko(s + E2)(1 - e+) 
s(s + a)(- (Eq. 22) as.l = (ins)(d$,l) = 

Substituting Eq. 22 into Eq. 20 yields: 

5. Using the method for taking the anti-laplace of a function 

Scheme IV-Compartmental model describing the distribution and 
elimination of a drug injected into Compartment I ,  elimination pro- 
ceeding from both the central and peripheral compartments, with a 

metabolite, 3, undergoing analogous disposition. 

having repeated terms in the denominator, as described in the 
Appendix, one may write the answer: 

Equations 18-24 plus Eqs. A3-A5 in the Appendix encom- 
pass the entire derivation for the very complicated A3 function using 
the methods described in this paper. No steps, equation rearrange- 
ments, or simplifications have been omitted. 

Use of One Mammillary Model as an Input Function into Another 
Mammillary Model-The real power of the simplified approach dis- 
cussed in this paper can be seen in the solution of the model pre- 
sented in Scheme IV. This model was employed by Rowland et a / .  
(9) in determining the extent of metabolite formation from aspirin 
in the peripheral compartment. Aspirin was injected into Compart- 
ment 1, and salicylic acid was measured in the plasma correspondinp 
to Compartment 3. In this example, we wish to solve for the aniouni. 
of drug in Compartment 3 in Scheme IV where: Ez = kzl + k?<; 
E4 = k43 + kto; A13 = kr2 k24 k40; a,B = fast and slow disposition 
constants describing an intravenous bolus injection of aspirin; and 
y,6 = fast and slow disposition constants describing an intravenous 
bolus injection of salicylic acid. 

If kt4 is neglected initially, Scheme IV may be described as two 
mammillary models in series, and the disposition function for thmc 
central compartment in each model may immediately be written: 

Given an intravenous bolus injection of aspirin into Compartment 
1, the Laplace transform of the amount of drug in Compartment 1 
is given by the products of dose, D ,  and Eq. 21 : 

(Eq. 26) 

The input function into Compartment 3 is given by: 
inf,3 = k l d a , . ~ )  (Eq. 2 7 )  

where * indicates that one is neglecting the alternate route of input 
into the second mammillary model, i.e., k24. Therefore, the Laplace 
transform of the amount of drug in Compartment 3 is given by the 
products of Eqs. 25 and 27: 

where D must now equal the dose of salicylic acid equivalent to ihe 
injected dose of aspirin. 

Equation 28 describes the Laplace transform of the amount of 
drug in Compartment 3 when passage from one mammillary moldel 
to the next is through a pathway connecting the central compart- 
ments of each model. This type of equation would yield a very easy 
solution to the six-compartment model proposed by Kaplan et rrl .  
(13) to  describe the pharmacokinetics of chlordiazepoxide and 
its two pharmacologically active biotransformation products. How - 
ever, if one wishes to add an alternate pathway to the model as shown 
in Scheme IV, it is only necessary to add the product of the alternatc 
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where: 
L 
P(s) 

= Laplace of { } 
= a polynomial i n s  such that Q(s) has the higher degree in 

s (a condition that is met with all derivations involving 
mammillary models) 

(s-XI) = a repeated function in Q(s); that is, rhas  a value greater 
than zero 

The solution (12) to this equation is given by: 

pathway rate constants and the dose to the numerator of Eq. 28: 

where AI3 = k12kz4k43. Since there are no repeated functions in 
the denominator of Eq. 29, the solution may be written down in 
one step using the general partial fraction theorem, as was shown by 
Benet andTuri(l1):  

Multiple-Dosing Equations-It can be stated that any equation 
describing the time course of drug in a driving force compartment 
after a single dose may be changed into a multiple-dose equation by 
multiplying each exponential term containing t by the function: 

p + ( N - l ) T h - i  - e - r k t  

1 - e-Th-i 

where a constant dose is given every r hours and the rate constants 
in the model are time and dose independent; 7 = dosing interval in 
the same time units as k;  ki = the appropriate first-order rate con- 
stant, where i varies from 1 to I t  corresponding to  the number of 
driving force compartments; and N = number of doses. This type 
of multiple-dose function was first used in pharmacokinetics by 
Dost (14). It can easily be demonstrated that: 

where f’ = r - ( N  - 117, the time since the last dose was given. 
Thus, the equation for the amount of drug in Compartment 1 of 
Scheme I1 during multiple intravenous injections of dose D every T 

hours can be obtained by multiplying each exponential term by the 
multiple-dosing function and rearranging: 

(E? - a)(& - a)D(l - e - J \ ’ ~ u )  
(0 - a)(y  - a)(l - e-aT)  

A, = - e-- t ’  + . . . (Eq. 32) 

CONCLUSION 

The general methods presented in this paper should markedly 
lessen the amount of work and journal pages necessary in deriving 
pharmacokinetic equations following linear kinetics. The use of 
input and disposition functions was suggested. and a general equa- 
tion to describe the disposition function for the central compartment 
of a mammillary model with elimination allowed from any com- 
partment was presented. The number of solvable rate constants 
for any mammillary model was considered. A general partial frac- 
tion theorem which allows the researcher to solve Laplace trans- 
forms in a single step was presented, and the use of a multiple- 
dosing function was described. Examples utilizing multicompart- 
ment models with a variety of inputs were presented so that the 
entire derivation could be followed by the reader with no steps 
omitted. Most equations for multicompartment models can be 
solved in four or five simple steps. 

APPENDIX 

When repeated functions appear in the denominator of a La- 
place transform, the general partial fraction theorem, as stated in 
Eq. 10, may not be used. Consider the following general equation: 

where Hs) is set equal to P(s)/Q(s) when the repeating function is 
omitted from Q(s). Therefore, Eq. A1 could be rewritten as: 

(Eq. Ala) 

Thus, the first term in Eq. A2 is the derivative of +@)eat with re- 
spect to s evaluated at s = XI. The second term is similar to Eq. 10, 
except that the function is not evaluated at  XI, the root corre- 
sponding to the repeated function. 

Equation 23 in this paper was solved using Eq. A2 as described 
here : 

With reference to Eqs. Ala, A2, and 23, the following terms are de- 
fined: 

r . = 1  
X I  = 0 
Xz = -a 
A3 = -0 

k13k0(s + Ez)(l - e-b8) 
“) = (s + a ) ( s  + p )  

The derivative in Eq. A2 yields the following: 

Evaluating Eq. A4 when s = 0 gives: 

Since Q(s) = 0 and eat = 1 when s = 0, the first term in the anti- 
Laplace of Eq. 23 (corresponding to  the first term on the right- 
hand side of Eq. A2) is given by Eq. A5. The second and third terms 
in the anti-Laplace of Eq. 23 [corresponding to the second term 
on the right-hand side of Eq. A2) are found using the methods pre- 
viously described for Laplace transforms involving nonrepeating 
functions. Thus Eq. 24 is the resulting anti-Laplace for Eq. 23. 
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Relationship between Dose and Plateau Levels of Drugs 
Eliminated by Parallel First-Order and Capacity-Limited Kinetics 

TAMEHIRO TSUCHIYA and GERHARD LEVY’ 

Abstract 0 Repetitive administration a t  constant time intervals of 
fixed doses of drugs which are eliminated by apparent first-order 
kinetics will usually result in the eventual attainment of a drug level 
plateau in the body. If a drug is eliminated solely by capacity- 
limited (Michaelis-Menten) kinetics in the therapeutic dose range, 
it will accumulate in the body without limit when the dose exceeds a 
certain amount. Drugs eliminated by parallel apparent first-order 
and capacity-limited kinetics will attain a drug level plateau but, 
unlike drugs eliminated only by first-order kinetics, the ratio of 
plateau level-dose is not independent of dose but increases with 
increasing dose. The rate of this increase is particularly high in a 
certain dose range which, therefore, represents a “danger zone” 
in which an increase in dose causes a considerably more than pro- 
portional increase in plateau level. This may be the cause of some 
adverse and toxic effects of certain drugs, such as the salicylates, 
during chronic therapy. 
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The most important reasons for elucidating the 
kinetics of absorption, distribution, and elimination of a 
drug are to be able to predict the time course of drug 
levels in the body as a function of dose and frequency of 
drug administration and to permit the design of safe 
and effective dosage regimens for long-term therapy. 
It is particularly important to be able to  predict the 
plateau level of a drug in the body attained some time 
after repeated administration of a fixed dose at  constant 
intervals. Many adverse reactions and intoxications are 
due to  accumulation of drugs to excessive levels; lack 
of effectiveness is often the result of a dosage regimen 
that produces a plateau level lower than the therapeutic 
range. 

The average amount of drug in the body ( A p l )  at the 
plateau is directly proportional to  dose (D) provided 
that absorption, distribution, and elimination can be 
described by a set of linear differential equations (1).  
In Eq. 1, F is the fraction of the dose which is absorbed, 
7 is the dosing interval, and k, is the elimination rate 
constant: 

Apt = DF/rkd (Eq. 1) 

The equation holds for all linear systems, irrespective of 
the number of apparent compartments required to 
describe them (2, 3). The direct proportionality between 
dose and plateau level of drug in the body, represented 
by Eq. 1, makes it easy to  adjust the plateau level by a 
corresponding adjustment of the maintenance dose. 

It is now realized that the elimination of some im- 
portant and widely used drugs cannot be described by a 
set of linear differential equations. Such drugs, of which 
salicylic acid and ethanol are prominent examples, ex- 
hibit dose-dependent kinetics (4). This dose dependence 
is most often due to the limited capacity of an enzyme 
system involved in the formation of a metabolite of the 
drug. In the case of salicylic acid, the formation of not 
one but two major metabolites is affected by the limited 
capacity of the respective enzyme systems, and this is 
evident in the therapeutic dose range in man ( 5 ) .  The 
elimination of such drugs proceeds relatively more 
slowly as the dose is increased (4, 6); for this reason, 
there is no direct, simple relationship between dose and 
plateau level as described by Eq. 1. 

The purposes of this article are to  identify the factors 
affecting the accumulation characteristics of drugs sub- 
ject to  capacity-limited elimination kinetics in the 
therapeutic dose range, to show the relationship be- 
tween dose and plateau drug levels in the body, and to 
compare the nature of this relationship to that of drugs 
eliminated by linear processes. 
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